

Connecting Central Europe and Scandinavia

An immersed tunnel with two tubes for a four-lane motorway and two tubes for a dual-track railway

The tunnel consist of 89 elements all below current seabed.

Status – the tunnel project

Approval process in Denmark and Germany

Denmark	Germany
2008: Denmark and Germany sign the State Treaty	
2009: Ratification in the Folketinget (97 % yes, 3 % no)	2009: Ratification in the Bundestag (80% yes, 20 % no)
2013-14: Environmental Impact Assessment hearing process: 1,600 pages and 43 responses	2013-15 : Plan approval application hearing process: 10,000 pages and 3,100 responses
2015: Adoption of the final Construction Act in the Folketinget	2015: A new public hearing round was decided in Germany
	2016: Renewed public hearing: 14,000 pages
	2018 : Final plan approval decision (Administrative decision)
	2019-20 : Court cases

The Civil Works Contracts

Contingent Contracts signed 2016

Tunnel North/South

Portals & Ramps

Sund*Balt

Dredging & reclamation

Immersed tunnel – one of the 79 standard elements

One of the 10 special elements

Special element

- > 10 special elements
- ➤ O&M access
- Access to installation rooms and the different tubes
- > Tranformerstations
- > Electrical switchboards
- > Pumpsumps
- Prepared for future safety systems

Fourth generation – Tender proposal

Femern A/S exposure site

- Installation in Rødbyhavn April 2010
- Collection of data for check of the requirements
- Long term data collection for knowledge build-up
- Follow up of contractors mix designs in the construction phase
- Part of the monitoring of performance during the operation phase
- Platform for research activities

Concrete Blocks

- Small block 1.0 x 1.0 x 0.2 m
- Large block 2.0 x 1.0 x 0.2 m
- Cast indoors as "high wall"
- Poker vibrated (except SCC)
- Demoulding after 24 h
- Curing by sealed plastic bag
- Maturity monitored by cast in sensors
- Large blocks exposed at 40-46 mdays

Testing programme: drilled cores from large blocks

- Petrographic analysis and evaluation (0.5, 2, 5, and 10 years exposure)
- Air void analysis (6 months exposure) (EN 480-11)
- Compressive strength development and density (0.5, 2, 5, and 10 years exposure) (EN 12390-3, EN 12390-7)
- Chloride penetration (submerged zone and splash zone) (0.5, 2, 5, and 10 years exposure)

5 year snap shot

Results: Chloride migration tests on small blocks

Correlation: D_{app} vs. D_{nssm}

Correlation: D_{nssm} vs. Penetration depth increment

$X_{0.05}$ v. Sqrt (time) based on 0.5, 2 and 5 year data

Figure F - $x_{0.05}$ vs. Sqrt(time)

Instrumented blocks

Conclusions

- Concrete types made from Portland cement and fly ash are permeable in the early age
- During the first half year these concrete types will develop low permeability
- After the first half year the chloride ingress appear to follow the square root formula
- The use of chloride migration coefficients (D_{nssm}) as input parameters to service life modelling should be performed with caution.
- D_{nssm} shall be measured not earlier than 4-8 months when blended binders and fly ash are used.

Functional requirements for concrete?

- Calculation methods for functional requirements must be commonly agreed and scientifically accepted if to be used in a contract
- Such methods could not be identified for chloride initiated reinforcement corrosion
- Lack of scientific knowledge and common understanding of chloride threshold values and ageing factor for chloride ingress
- Requirements to binder combinations, cover and water/ binder-ratios have therefore been specified

Calculation of minimum concrete cover

- Data from up to 20 year old Scandinavian exposure sites have been used
- The Clinc-comp model developed and improved by Tang, Nilsson and Frederiksen have synthesised the data
- Conservative threshold values have been chosen

Calculation of minimum concrete cover

- The model has been used to define a matrix of minimum concrete covers and maximum water cement ratios for different allowed binder combinations.
- Results from core drillings in south Scandinavian marine structures and recent new data on threshold values have confirmed the project choices, when tested in the model.

www.concreteexpertcentre.dk

Fehmarn Belt Concrete Investigations

