

1

High Performance Icelandic Alternative Cementitious Material

February 21, 2020

High Performance Alternative Cementitious Material

- STP is natural pozzolan that is 90% amorphous and meets the requirements of ASTM C618 Class N.
- STP at particle sizes of 4 μ m and 8 μ m were compared to Class F fly ash, silica fume and metakaolin for the following properties:
 - ASR Performance (TEC and TCG)
 - Mortar Cube Strength Versus Time (TEC)
 - Concrete Testing (TCG)
 - Plastic properties
 - Compressive strength versus time
 - Freezing and thawing resistance
 - Transport properties related to water and chloride ingress
 - Calorimetry (TCG)
- The results in the following slides show that it outperforms fly ash and is comparable to or better than silica fume or metakaolin.

ASR Performance

- Evaluated in ASTM C441 (Ground Pyrex Glass) by TEC Services
- Evaluated in ASTM C1260/C1567 (Accelerated mortar bars) (TCG)

ASTM C441			
Mix Identification :	Control	STP 90-4	STP 90-8
% Replacement		25	25
Expansion % at 14 d	0.027	-0.001	0.005
% Reduction at 14 d		103.7	81.5

ASTM C1260/C1567

Mix Identification :	Control	STP 90-4	STP 90-8	FA-25	SF-10	M-10	FA-20
% Replacement		20	20	25	10	10	20
Linear Expansion % at 14 d	0.15	0.02	0.03	0.02	0.08	0.03	0.08
Linear Expansion % at 28 d	0.31	0.05	0.04	0.04	0.19	0.05	0.15
% Reduction at 14 d		85.3	82.7	86.7	46.7	80.0	46.7
% Reduction at 21 d		85.5	86.1	87.1	38.7	83.9	51.6

FA=Type F fly ash, SF=Silica Fume, M=Metakaolin

Mortar Cube Results ASTM C618

Strength (psi)

% Increase

	Control	STP-90-4	STP-90-8	STP-90-4	STP-90-8
1 Day	2430	2340	2110	96	87
3 Day	3960	3620	3390	91	86
7 Day	4930	4520	3820	92	77
14 Day	5320	5720	4770	108	90
21 Day	5750	7160	5810	125	101
28 Day	6460	7500	6310	116	98
56 Day	6390	8000	7680	125	120
90 Day	6220	8640	7870	139	127
120 Day	6450	9020	8370	140	130
180 Day	6490	9060	8230	140	127
Water Req % of control	242	242	242	100	100

Borealis

Concrete Mixes

Mix Description:	Control	20% STP-90-4 Replacement	20% STP-90-8 Replacement	10% Silica Fume Replacement	10% Metakaolin Replacement
Mix Number:	CTL	90-4	90-8	SF-10	M-10
Units	lb/yd3	lb/yd3	lb/yd3	lb/yd3	lb/yd3
Lafarge Alpena Type I/II	658	526	526	592	592
20% Replacement 90% Amorphous 4-Micror	า	132			
20% Replacement 90% Amorphous 8-Micror	า		132		
20% Replacement 50% Amorphous 4 -Micror	า				
20% Replacement 50% Amorphous 8 -Micror	า				
Class F Fly Ash Boral St Johns River Park Plt.					
Silica Fume Norchem				66	
Metakaolin					66
Agg. Resource Midway Pit MI Natural Fine Agg SSD DOT #39-64	1280	1273	1273	1266	1262
Vulcan Lithia Springs GA Pit 3/4" Crushed Coarse Agg SSD	1680	1680	1680	1680	1680
Total Water	250	250	250	250	250
Designed Air %	6%	6%	6%	6%	6%
Water/Cement Ratio	0.38	0.38	0.38	0.38	0.38
Admixtures					
Sika Air 260 Air Entrainment oz./cwt	0.35	0.35	0.36	0.35	0.42
Sika Viscocrete 2100 HRWR oz./cwt 🥂	1.1	1.3	1.5	3.1	3.1

- STP 90-4 and STP 90-8 have workability is similar to the cement only control
- Silica fume and Metakaoline require more than **two times** the superplasticizer dosage

Concrete Plastic Properties

Mix Description:	Control	20% STP-90-4 Replacement	20% STP-90-8 Replacement	10% Silica Fume Replacement	10% Metakaolin Replacement
Plastic Properties					
Slump (in.) ASTM C31	6.00	7.00	7.00	3.50	6.75
Air % As Tested ASTM C231	7.4	5.8	6.8	6.5	6.8
Density lb/ft3 ASTM C138	138.3	140.7	139.6	140.9	140.0
Concrete Temp °F ASTM C1064	72	71	71	71	71
Initial Set hours:min	4:55	5:00	5:02	4:42	5:13
Final Set hours:min	6:27	6:19	6:43	6:11	6:39

- Equivalent setting time to control
- Good workability and air entrainable

Compressive Strength

• Compressive Strength significantly higher than control and comparable to or better than silica fume or metakaolin

Freezing and Thawing

ASTM C666 Freeze Thaw Method A	Control	STP 90-8
Slump (in.) ASTM C31	4.50	5.00
Air % As Tested ASTM C231	6.7	5.6
Super Air Meter Number	0.23	0.17
Durability Factor Percent	97	97
Weight Loss Percent	0.10	0.50

• Excellent Freeze/Thaw Resistance

Transport Properties

Mix Identification :	CTL	STP 90-4	STP 90-8	SF-10	M-10	FA-25			
ASTM C1760 Conductivity 4" x 8" cyl.									
28 d Bulk Elect Conductivity (mS/m) C1760	12.20	3.94	6.52	3.17	2.19	13.20			
28d STDev (mS/m) C1760	0.16	0.08	0.00	0.00	0.03	0.20			
28 d Coulombs C1760	2214.00	716.50	1185.50	576.50	397.00	2390.50		Conduc	ivity vs Time
56 d Bulk Elect Conductivity (mS/m) C1760	10.90	2.54	3.43	2.40	2.09	8.20			
56 d STDev (mS/m) C1760	0.10	0.31	0.02	0.06	0.04	0.10			
90 d Bulk Elect Conductivity (mS/m) C1760	10.10	1.72	2.43	2.14	2.04	5.40	(m)		
90 d STDev (mS/m) C1760	0.18	0.03	0.01	0.04	0.04	0.10	ns/		
365 d Bulk Elect Conductivity (mS/m) C1760	8.30	0.97	1.24	2.10	2.02	2.10	5		
365 d STDev (mS/m) C1760	0.32	0.02	0.00	0.02	0.04	0.06	ivit		
453 d Bulk Elect Conductivity (mS/m) C1760	8.00	0.91	1.11	2.10	1.91	1.90	nct		
453 d STDev (mS/m) C1760	0.28	0.01	0.01	0.01	0.01	0.02	puq		
609 d Bulk Elect Conductivity (mS/m) C1760	7.90	0.91	1.11	2.20	2.01	1.70	č		
609 d STDev (mS/m) C1760	0.33	0.01	0.01	0.00	0.02	0.04	Bull	→ CTI → STP 90-4 → STP 9	0-8 → SE-10 → M-10 → EA-25
NT Build 492 Non Steady State Diff. Coeff.	-								
28 days D_{NSS} (x 10 ⁻¹² m ² /s)	18.2	6.8	9.6	6.4	3.3	17.3	0.5	0	100
ASTM 1556 Bulk Diffusion	-						1	.0	100
Surface Concentration (ppm)	9572	12606	12844	10450	10572	9180			lime (days)
Diffusion Coefficient (D _a), (x 10 ⁻¹² m ² /s)	3.9	1.1	2.1	1.6	1.1	4.9			
ASTM C1585 Capillary Absorption									
Initial absorption (mm/s ^{0.5})	0.00030	0.00014	0.00082	0.00058	0.00050	0.00194			
Secondary absorption (mm/s ^{0.5})	0.00023	0.00017	0.00019	0.00022	0.00022	0.00064			

- Low permeability at early ages (low diffusion, conductivity, Coulombs)
- Continues to improve over time (more so than silica fume or metakaolin)

1000

Boreal

Predicted Times to Corrosion for Bridge Deck

- Used Detroit, MI USA as a severe example
- 70 mm concrete cover
- 250 mm deck thickness
- Modified Life 365[™] to be consistent with new data
 - Aging constant and hydration time, based on ASTM 1760 conductivity data
 - Diffusion Coefficients, based on ASTM C1556
 - Surface buildup, based on ASTM C1585 capillary absorption results

Predicted Time to Corrosion Initiation Curves

Isothermal Calorimetry Results

NAix	Peak	Peak	Peak Time	Total Heat	Total
IVIIX	watts	mW/g cmt	H:min	J	J/g cement
Cement	0.44	4.4	9:45	33700	337
20% STP 90-4	0.38	4.8	10:50	30560	382
20% STP 90-8	0.38	4.7	11:00	30240	378
10% Metakaolin	0.44	4.9	11:15	36360	404
10% Silica Fume	0.36	4.0	11:15	31770	353

- Improves cement efficiency but lowers overall heat output
- In contrast to metakaolin which will increase heat produced

Preliminary Results with Icelandic Cements:

Mix Description:	Control	0% STP-2-4 Replacement	
	kg/m ³	kg/m ³	
Aalborg Type III Cement	296	237	
20% Replacement SRA2- 4-Micron	0	59	
Agg. Resource Midway Pit	880	873	
Natural Fine Agg SSD Caremuse Cedarville Limestone	1020	1020	
3/4" Crushed Coarse Agg SSD	1030	1036	
Total Water	133	133	
Designed Air %	6.5%	6.5%	
Water/Cement Ratio	0.45	0.45	
<u>Admixtures</u>			
Grace Daravair 1000 AEA mL/kg	0.33	0.59	
Grace WRDA 82 WR mL/kg	1.3	1.3	
Grace ADVA 575 HRWR mL/kg	3.3	2.6	
Physical Properties			
Slump (mm) ASTM C31	114.3	146.1	
Air % As Tested ASTM C231	6.1	8.0	
Density kg/m ³ ASTM C138	2366.1	2321.4	
Concrete Temp °C ASTM C1064	20	20	
Yield m ³	0.99	1.01	
ASTM C403 Time of Set			Difference
Initial Set hours:min	4:39	5:23	0:44
Final Set hours:min	6:14	6:50	0:36
ASTM C39 Comp. Strength 101.6 x 203.2 mm	<u>cyl. MPa</u>		
1 Day Strength (1 each)	22.5	19.5	-3.0
7 Day Strength (2 each)	40.6	37.0	-3.6
14 Day Strength (2 each)	45.2	47.9	2.7

CO₂ Footprint:

less than 2kgCO₂/ton

From:	Sandra Rán Ásgrímsdótti	r < sandra	@mannvit.is>
Sent:	Thursday, February 20, 20	020 3:35 A	AM
To:	Romeo Ciuperca		
Cc:	Sigurður Páll Steindórsso	n; Þorbjö	rg Hólmgeirsdóttir, Stefanía Lára Bjamadóttir
Su bject:	RE: Fundur		
Dear Romeo,			
Preliminary results form	our CO2 calculations give us the fo	llowing re	esults.
CO2 emissions from pro	oduction of 1 tonn og 4 micron	1,80	kgCO2/ton
CO2 emissions from pro	oduction of 1 tonn og 8 micron	1,36	kgCO2/ton
I will send you some fur	ther clarifications later to day.		
Kveðja / Regards,			
Sandra Rán Ásgrímsdóttir			
Sjálfbærni verkfræðingur			
Sustainability Engineer			
Simi / Tel: +354 422 3180			
GSM / Mobile: +354 866 0	995		
MANNVIT			

www.mannvit.is/www.mannvit.com

Greencraft LLC 1831 Warren Place, Suite 200, Norcross Ga 30093 +1-404-787-6221, romeo@greencraft.com www.greencraft.com

Borealis

Iceland Carbon Footprint Reduction Benefits:

- A 20% ACM replacement of Portland Cement will eliminate over 32,000 tons CO2 per year (1,2)
- A 20% OPC replacement will reduce CO2 equivalent to planting 1,440,000 trees (3)
- A 30% ACM replacement of Portland Cement will eliminate over 48,000 tons CO2 per year (1,2)
- A 30% OPC replacement will reduce CO2 equivalent to planting 2,160,000 trees (3)

- 1. Based on Portland Cement CO2 emissions of approx. 800 kg/ton
- 2. CO2 reduction estimate calculated based on 2018 Iceland cement use of 200,000 tons/year
- 3. Based on an average tree absorption of 22 kg per year of CO2 Iceland tree absorption may vary.

Greencraft LLC 1831 Warren Place, Suite 200, Norcross Ga 30093 +1-404-787-6221, romeo@greencraft.com www.greencraft.com

Boreal

Analysenbericht Berichtnummer ZL-20-009 Prüfauftrag ZL 2020-TEC-01 Holcim (Schweiz) AG, TEC Auftraggeber

Reactive Silica requirement of

min 25%:

46.1% 46.3%

Analysenergebnisse

Reaktionsfähiges SiO₂ nach AW-048*

LIMS Nr.	MTD190076	MTD190080
Externe Nr.	P.1572M	P.1583M
Analysendatum	03.02.2020	03.02.2020
Reaktions-fähiges SiO ₂ in %	46.1	46.3

Holcim (Schweiz) AG Zentral-Labor CH-5303 Warenlinger

Telefon +41 58 850 55 15 zl-che@lafargeholcim.com www.holcim.ch Aldoreditiert nach ISO/IEC 17025 STS Nummer 0555

Greencraft LLC 1831 Warren Place, Suite 200, Norcross Ga 30093 +1-404-787-6221, romeo@greencraft.com www.greencraft.com

ASTM C 618 Meets Class N

Greencraft LLC			TEC Services LD.:	TEC 10-5575
1831 Warren Place, Suite 200			Lab No.:	17-540-4
Notcross, Ga 30093				
	REPORT OF FLY ASH TE	STS		
Chient ID: STP-2 4 Mic	ION	ate Received:	July 2	5, 2017
Manufacturer: Mill Test				
		Ramity	Spacificatio	an (Class N)
Chemics	l Analysis	(wt%)	ASTM C618-15	AASHTO M295-
Silicon Dioxide (SiO ₂)		47.0		
Aluminum Oxide (Al ₂ O ₁)		13.5		
ron Oxide (Fe ₂ O ₃)		11.86	-	
Sum of Silicon Dioxide, Iron Oxide &	Aluminum Oxide (SiO2+Al2O3+Fe2O3)	72.4	70 % min.	70 % min.
Calcium Oxide (CaO)		11.5	-	
Magnesium Oxide (MgO)	X	9.9	-	-
Sodium Oxide (Na ₂ O)		1.70		-
Potassium Oxide (K ₂ O)		0.25		
"Sodium Oxide Equivalent (Na2O+	0.658K ₂ O)"	1.87	-	
Sulfur Trioxide (SO3)		0.10	4 % max.	4 % max.
Loss on Ignition		0.6	10 % max.	5 % max.
Moisture Content		0.46	3 % max.	3 % max.
Availab	le Alkalies			
Sodium Oxide (Na ₂ O) as Available Alk	alies	0.94	-	
Potassium Oxide (K2O) as Available Al	kalies	0.12		
Available Alkalies as "Sodium Oxide I	Equivalent (Na ₂ O+0.658K ₂ O)"	1.02		1.5 % max.
Physica	l Analysis			
Fineness (Amount Retained on #325 Si	ere)	0.096	34 % max.	34 % max.
Strength Activity Index with Portland C	ement			
At 7	Days:	10/06	75 % min.*	75 % min.
Control Average, psi: 4610	Test Average, psi: 4800	10470	(of control)	(of control)
At 2	Days:	12786	75 % min.	75 % min.*
Control Average, psi: 5660	Test Average, psi: 7190	12/90	(of control)	(of control)
Water Requirements (Test H2O/Control	H ₂ O)	0024	115 % max.	115 % max.
Control, mls: 242	Test, mls: 239	2399	(of control)	(of control)
Autoclave Expansion:		0.0296	± 0.8 % max.	± 0.8 % max.
Specific Gravity.		2.86	-	

TEC Services

	5erv			
Client: Mr. Romeo Ciuperca			Date:	September 25, 2017
Greencraft LLC			EC Services LD.:	1EC 10-5575
1851 Warren Place, Suite 200			Lab No.:	17-540-8
Notcloss, Ga 30095				
REPORT OF	FLY ASH TE	STS		
Chent ID: STP-2 8 Micron	1	Jate Received:	July 25, 2017	
Manufacturer: Mill Test				
		Results	Specification (Class N)	
Chemical Analysis		(wt%)	ASTM C618-15	AASHTO M295-11
Silicon Dioxide (SiO ₂)		47.0		
Aluminum Oxide (Al ₂ O ₃)		13.5		
Iron Oxide (Fe ₂ O ₃)		11.86		
Sum of Silicon Dioxide, Iron Oxide & Aluminum Oxide (SiO ₂ +Al	72.4	70 % min.	70 % min.	
Calcium Oxide (CaO)	11.5			
Magnesium Oxide (MgO)	99	-		
Sodium Oxide (Na ₂ O)		1.70		
Potassium Oxide (K2O)		0.25		
"Sodium Oxide Equivalent (Na2O+0.658K2O)"		1.87	-	-
Sulfur Trioxide (SO3)		0.10	4 % max.	4 % max.
Loss on Ignition		0.6	10 % max.	5 % max.
Moisture Content		0.46	3 % max.	3 % max.
Available Alkalies				
Sodium Oxide (Na ₂ O) as Available Alkalies		0.94		
Potassium Oxide (K ₂ O) as Available Alkalies		0.12		
Available Alkalies as "Sodium Oxide Equivalent (Na2O+0.658K2	D)"	1.02		1.5 % max.
Physical Analysis				
Fineness (Amount Retained on #325 Sieve)		0.096	34 % max.	34 % max.
Strength Activity Index with Portland Cement				
At 7 Days:			75 % min."	75 % min.*
Control Average, psi: 4610 Test Average, psi:	3960	8070	(of control)	(of control)
At 28 Days:		10001	75 % min.*	75 % min.*
Control Average, psi: 5660 Test Average, psi:	6100	10890	(of control)	(of control)
Water Requirements (Test H ₂ O/Control H ₂ O)			115 % max.	115 % max.
Control mis: 242 Test mis:	239	9996	(of control)	(of control)
Autoclave Expansion:		0.0196	± 0.8 % max.	± 0.8 % max.
Specific Gravity		2.86		

¹ Meeting the 7 day or 28 day strength activity index will indicate specific

The results of our testing indicate that this sample complies with ASTM C618-15 and AASHTO M295-11 specifications for Class N pozzolans.

The results of our testing indicate that this sample complies with ASTM C618-15 and AASHTO M295-11 specifications for Class N pozzolan

Respectfully Submitted, Testing, Engineering & C	onsulting Ser	vices, Inc.		
Jon Com	-		Sham	P. McConneck
Dean Roosa Project Manager		_	Shawn McCormi Laboratory Princ	ick ipal
150 17025	BARRY Corps	Testing, Engineening & Consultary Services. Nrc. 215 Bullnic Drive Lawrencerdle, GA 10046 270.995 8000 270.995 8550 (F) www.tocsovices.com	AR	49

Testing, Engineering & C	onsulting Service	5, IBC.	0 34-2
March. Mion	ł		Sharn P. M. Corneck
Deen Poore			Shawn McCormick
Denn Fuosa			
Project Manager			Laboratory Principal
Project Manager ISO 17025	848	Testing, Engineering & Consulting Services, Iric.	Laboratory Principal

Greencraft LLC 1831 Warren Place, Suite 200, Norcross Ga 30093 +1-404-787-6221, romeo@greencraft.com www.greencraft.com

Borealis

Neal S. Berke, Ph.D., FACI, FASTM, FNACE

Dr. Neal S. Berke, FACI, is the Vice President, Research at Tourney Consulting Group, in Kalamazoo, MI. He has over 35 years of experience, at Bethlehem Steel and Grace Construction Products in the corrosion and durability of infrastructure materials and the properties of concrete as well as service life modeling. He has conducted extensive research on silica fume, fly ash, slag, metakaolin and other pozzolanic materials with an emphasis on irmproving both the durability and sustainability of concrete. He is the October 2012 recipient of the J.C. Roumain Innovation in Concrete Award.

He has written and presented over one hundred papers on his research activities, has 45 U. S. patents, and is a frequent reviewer for several technical organizations and journals.

Neal serves on several ACI, NACE, ASTM, and TRB committees, and is Immediate Past Chairman of ASTM Committee G01 On the Corrosion of Metals, and is chairman of ASTM Section C.09.03.08 on Durability Enhancing Admixtures.

Dr. Berke has a bachelor's degree in Physics from the University of Chicago and a Ph.D. in Metallurgical Engineering from the University of Illinois at Urbana-Champaign.

Dr. Diego Rosani, Chemist

Mr. Rosani is a consultant and is the former Team Leader at the Heidelberg Cement Technology Center in Germany. He has over 35 years of experience at Heidelberg Cement, Holcim, and Ecodesco S.p.A, in cement and SCM technology. In these roles he developed several innovative products and developed new applications for cementitious materials.

He participates in several society and standards groups related to cement technology. He is frequent lecturer on various aspects of cement technology and CO_2 initiatives.

Mr. Rosani received his degree in Chemistry at Università degli Studi Trieste.

The research reported was performed at Tourney Consulting Group, LLC. (TCG), and at TEC Services. Both companies are AASHTO Accredited.

TCG specializes in the testing of materials durability and volume stability of construction materials, providing research and development for companies of all sizes, and in providing Engineering Service Life solutions for structures. Recent projects include the Goethals Bridge (award winner), Tappen Zee Bridge, New Bridge over the St. Lawrence. TCG was and is involved in several major projects in the Middle East and Asia.

Thank You

For More Information Contact:

Romeo Ciuperca Greencraft LLC 1831 Warren Place, Suite 200 Norcross, GA 30093 USA Email: <u>romeo@greencraft.com</u> Tel: +1-404-787-6221